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We model the correlations between all
source parameters and between the lens
and the source on large scales. A ten-

small-scale 
source layers 
constrains the 
lens further.

minute fit (red-yellow-green
ellipses) consistently uncovers
the simulated lens parameters.

The uncertainties are
dictated by the image
resolution. Including

lens source

Gaussian process

(mock) observation

differentiable simulator

Variational Inference

instrumental 
effects

(noise, PSF)

Small details are reconstructed
by inducing points attached to
the image pixels (which thus
adapt to the magnification).
Several layers containing 𝒪𝒪 105
parameters in total require a few
hours to converge.

On large scales the source is
modelled on a grid of “inducing
points”. This first stage is rapid:
fitting 1000 parameters takes
about 10 minutes.

ELBO = 𝔼𝔼𝑞𝑞𝜙𝜙 𝜃𝜃 ln 𝑝𝑝 𝜃𝜃, 𝑥𝑥 − ln 𝑞𝑞𝜙𝜙 𝜃𝜃

In stochastic variational inference (SVI) a parametrised proposal distribution
𝑞𝑞𝜙𝜙(𝜃𝜃) is fit to the multi-dimensional posterior 𝑝𝑝(𝜃𝜃|𝑥𝑥) of a large number of
parameters 𝜃𝜃, given the observation 𝑥𝑥. The target of optimisation via gradient
descent is the evidence lower bound (ELBO), which balances a good fit to the
data (left panel below) and the appropriate uncertainty (middle panel). It is also
useful in optimising hyperparameters via a relation to the Bayesian evidence.

likelihood

Gradient descent adjusts 
parameters 𝜙𝜙 of proposal: 

mean, uncertainty…



Varying the lens parameters (mis)aligns multiple projections GP marginal likelihood favours perfect alignment (up to noise)

A fraction of the pixel-pixel covariance is due to an
overlap of light-collecting areas in the source plane.
We approximate the pixels as Gaussians aligned with
the lensed pixel grid, which can be analytically
integrated out as in the above equation.

Gaussian processes
Gaussian processes (GPs) generalise the normal distribution to the
space of functions. They achieve two goals. For one, a GP evaluates the
amount of variability in the source, which is minimised when multiple
projections of the source are well-aligned by the modelled lens (see
above). A GP also serves as a posterior for the surface brightness of the
source (pictured below), helping disambiguate the effect of lensing
substructure and providing an efficient way to sample sources consistent
with the observation needed to train substructure inference networks.
To model source features on different scales we use several GP layers
with a range of fixed correlation lengthscales.

The variance of smaller-scale layers is automatically 
suppressed by hyperparameter optimisation.

layers of decreasing correlation length

mean

standard 
deviation

combined

GPs are non-parametric, providing explicit formulae for the
posterior mean and covariance. In order to avoid the necessary
expensive matrix inverse and determinant calculation, we re-
phrase the GP as a generative model (k labelling layers):

𝛉𝛉𝑘𝑘 are sets of source parameters inferred variationally;
𝛼𝛼𝑘𝑘2 are the variance hyperparameters of each layer;
𝐓𝐓𝑘𝑘 are “transfer matrices” correlating close-by pixels in the
source plane. They act as a square-root of the covariance matrix:

𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 ∼ 𝒩𝒩 ∑𝑘𝑘 𝐟𝐟𝑘𝑘 , noise2 ,   𝐟𝐟𝑘𝑘 = 𝐓𝐓𝑘𝑘𝛉𝛉𝑘𝑘, 𝛉𝛉𝑘𝑘 ∼ 𝒩𝒩(0,𝛼𝛼𝑘𝑘2)

A generative model

𝐊𝐊𝑘𝑘 = 𝛼𝛼𝑘𝑘2𝐓𝐓𝑘𝑘𝐓𝐓𝑘𝑘𝑇𝑇 ⟷ 𝒢𝒢 𝑥𝑥, 2Σ = �𝒢𝒢 𝑥𝑥, Σ 𝒢𝒢 𝑥𝑥 − 𝑦𝑦, Σ 𝑑𝑑𝑦𝑦
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